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Abstract. Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian
matrices, we solve effectively the least-squares problem min ‖AX − B‖ over anti-Hermitian
generalized Hamiltonian matrices. We derive some necessary and sufficient conditions for
solvability of the problem and an expression for general solution of the matrix equation
AX = B. In addition, we also obtain the expression for the solution of a relevant optimal
approximate problem.
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1 Introduction

A typical least-squares problem is: Given a set S of matrices and given matrices X and B, find
all matrices A ∈ S for which ‖AX −B‖ = min

G∈S
‖GX −B‖.

We get different least-squares problems according to different sets S. The least-squares prob-
lems and relevant constrained matrix equation problems have been widely used in particle physics
and geology[1], inverse problems of vibration theory[2,3], inverse Sturm-Liouville problem[4], con-
trol theory and multidimensional approximation[5,6]. In recent years a series of good results have
been made for this problem[2−14]. For example, J. G. Sun considered the problem for the case of
real symmetric matrices in [10]. K. G. Woodgate studied the problem for the case of symmetric
positive semidefinite matrices in [3]. D. X. Xie studied the problem for the case of anti-symmetric
matrices, nonnegative definite matrices (may be nonsymmetric), as well as bisymmetric matrices
in [11-13]. In this paper, we discuss the problem for a set S which is defined in the following
way.
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Definition 1.1. Assume that J ∈ Rn×n is a given orthogonal anti-symmetric matrix. A ∈ Cn×n

is said to be an anti-Hermitian generalized Hamiltonian matrix if

AH = −A and JAJ = AH

where AH stands for the conjugate transformation of matrix A. The set of all n-by-n anti-
Hermitian generalized Hamiltonian matrices is denoted by AHHCn×n, i.e.,

AHHCn×n = {A ∈ Cn×n|AH = −A and JAJ = AH}.

It is clear that the set AHHCn×n is a linear subspace of Cn×n and depends on matrix J .
Throughout the paper, we always assume that the matrix J is fixed. In addition, by the properties
of the matrix J , we have J2 = −In. Consequently, n must be an even integer.

In this paper, we study the following two problems.

Problem I Given X,B ∈ Cn×m, find a matrix A ∈ AHHCn×n such that

min f(A) = min ‖AX −B‖.

Problem II Given A∗ ∈ Cn×n, find a matrix Â ∈ SX,B such that

‖A∗ − Â‖ = min
∀A∈SX,B

‖A∗ −A‖,

where SX,B is the set of solutions of Problem I and ‖A‖ stands for the Frobenius norm of matrix
A.

In this paper, we derive an expression of the solution for Problems I and II. We prove the nec-
essary and sufficient conditions of the solvability for the matrix equation AX = B in AHHCn×n.

Let us introduce some notations that will be used in this paper. Let HCn×n(AHC
n×n

) be the
set of all n× n Hermitian matrices (anti-Hermitian matrices). The notation UCn×n stands for
the set of all n×n unitary matrices. We denote the Moore-Penrose generalized inverse of a matrix
A by A+, the identity matrix of order n by In. For A,B ∈ Cn×m, we use < A,B >= tr(BHA)
to define the inner product of matrices A and B. The induced matrix norm is the so called
Frobenius norm, i.e.,

‖A‖ =
√

< A,A > = [tr(AHA)]
1
2 .

It is clear that Cn×m is a complete inner product space. For A,B ∈ Cn×m, A ∗B stands for the
Hadamard product of A and B.

This paper is organized as follows. In Section 2, we discuss the properties of the AHHCn×n.
In Section 3, we derive the expression of the general solution for Problem I, and then establish
the necessary and sufficient conditions of the solvability for AX = B in AHHCn×n. In Section 4,
we prove the existence and uniqueness of the solution and derive the expression of the solution
for Problem II.

2 Characterization of anti-Hermitian generalized Hamil-

tonian matrices

In this section, we prove the denotative theorem of anti-Hermitian generalized Hamiltonian
matrices. Let

P1 =
1

2
(I + iJ), P2 =

1

2
(I − iJ). (1)
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where i =
√
−1. It is not difficult to prove that P1 and P2 are orthogonal projection matrices.

Moreover, we have P1 + P2 = I and P1P2 = 0. Hence, there exist unit column-orthogonal
matrices Q1 ∈ Cn×k and Q2 ∈ Cn×k(n = 2k) such that

P1 = Q1Q
H
1 , P2 = Q2Q

H
2 , (2)

where QH
1 Q2 = 0. Let Q = (Q1, Q2). By properties of P1 and P2, it is easy to prove that Q is

an n-by-n unitary matrix.

Theorem 2.1. A matrix A belongs to AHHCn×n if and only if it is of the form

A = Q

(

E1 0
0 E2

)

QH (3)

for some E1, E2 ∈ AHCk×k.

Proof. First we note that for A ∈ AHHCn×n, it holds that

P1AP1 + P2AP2 =
1

4
[(I + iJ)A(I + iJ) + (I − iJ)A(I − iJ)]

=
1

4
[2A− 2JAJ ] =

1

4
· 4A = A.

Then it follows from (2) that

A = Q1Q
H
1 AQ1Q

H
1 +Q2Q

H
2 AQ2Q

H
2

= Q

(

QH
1 AQ1 0

0 QH
2 AQ2

)

QH

∆
= Q

(

E1 0
0 E2

)

QH ,

where E1 = QH
1 AQ1 and E2 = QH

2 AQ2. Since A ∈ AHCn×n, we have E1, E2 ∈ AHCk×k.
Conversely, the matrix A of the form (3) clearly belongs to AHCn×n. Furthermore, it follows
from J = −i(P1 − P2) = −i(Q1Q

H
1 −Q2Q

H
2 ) that

JQ = iQ

(

−Ik 0
0 Ik

)

and QHJ = i

(

−Ik 0
0 Ik

)

QH .

Consequently,

JAJ = JQ

(

E1 0
0 E2

)

QHJ

= −Q
(

−Ik 0
0 Ik

)(

E1 0
0 E2

)(

−Ik 0
0 Ik

)

QH

= −Q
(

E1 0
0 E2

)

QH = −A,

which completes the proof.
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3 General Solution of Problem I

In this section, we derive the expression for the general solution for Problem I, and then establish
necessary and sufficient conditions about the solvability of the matrix equation AX = B in
AHHCn×n .

The following Lemma comes from [11].

Lemma 3.1. Let X ∈ Cn×m, B ∈ Cn×m. Suppose that the singular value decomposition of
matrix X is as follows.

X = U

(

Σ 0
0 0

)

V H

where U = (U1, U2) ∈ UCn×n, V = (V1, V2) ∈ UCm×m, Σ = diag(σ1, · · · , σr), σj > 0, j =

1, · · · , r. Let φ = (φij), φij =
1

σ2
i + σ2

j

, 1 ≤ i, j ≤ r. Then

• (1) the problem min
A∈AHCn×n

‖AX − B‖ has a solution. Moreover, the solution can be ex-

pressed as

A = U

(

φ ∗ (UH
1 BV1Σ − ΣV H

1 BHU1) −Σ−1V H
1 BHU2

UH
2 BV1Σ

−1 G

)

UH , G ∈ AHC(n−r)×(n−r).

(4)

• (2) the matrix equation AX = B has a solution in AHCn×n if and only if

B = BX+X and XHB = −BHX. (5)

In addition, the solution can be expressed as

A = U

(

UH
1 BV1Σ

−1 −Σ−1V H
1 BHU2

UH
2 BV1Σ

−1 G

)

UH , G ∈ AHC(n−r)×(n−r). (6)

Theorem 3.1. Let X,B ∈ Cn×m and

QHX =

(

X1

X2

)

, QHB =

(

B1

B2

)

, where X1, B1 ∈ Ck×m, n = 2k. (7)

Suppose that the singular value decomposition of matrices X1 and X2 are as follows, respectively,

X1 = U

(

Σ 0
0 0

)

V H , X2 = M

(

Γ 0
0 0

)

NH ,

where U = (U1, U2) ∈ UCk×k, V = (V1, V2) ∈ UCm×m, M = (M1,M2) ∈ UCk×k, N =
(N1, N2) ∈ UCm×m, Σ = diag(σ1, · · · , σr), σj > 0, j = 1, · · · , r, Γ = diag(δ1, · · · , δs), δj >
0, j = 1, · · · , s, rank(X1) = r, and rank(X2) = s. Let φ = (φij), ψ = (ψij) with

φij =
1

σ2
i + σ2

j

, 1 ≤ i, j ≤ r; ψij =
1

δ2i + δ2j
, 1 ≤ i, j ≤ s.

Then the solution of Problem I can be expressed as

A = Q

(

E1 0
0 E2

)

QH (8)
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where

E1 = U

(

φ ∗ (UH
1 B1V1Σ − ΣV H

1 BH
1 U1) −Σ−1V H

1 BH
1 U2

UH
2 B1V1Σ

−1 G1

)

UH , G ∈ AHC(k−r)×(k−r). (9)

E2 = M

(

ψ ∗ (MH
1 B2N1Γ − ΓNH

1 B
H
2 M1) −Γ−1NH

1 B
H
2 M2

MH
2 B2N1Γ

−1 G2

)

MH , G2 ∈ AHC(k−s)×(k−s).

(10)

Proof. For any A ∈ AHHCn×n, by Theorem 2.1, there exist E1, E2 ∈ AHCk×k such that

A = Q

(

E1 0
0 E2

)

QH . (11)

It follows from (11) that

‖AX −B‖2 =

∥

∥

∥

∥

Q

(

E1 0
0 E2

)

QHX − B

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

E1 0
0 E2

)(

X1

X2

)

−
(

B1

B2

)∥

∥

∥

∥

2

= ‖E1X1 −B1‖2 + ‖E2X2 −B2‖2.

Hence, the problem min
A∈AHHCn×n

‖AX −B‖ is equivalent to the following problems

min
E1∈AHCk×k

‖E1X1 −B1‖ (12)

and

min
E2∈AHCk×k

‖E2X2 −B2‖. (13)

By Lemma 3.1, the solutions E1 and E2 of the problems (12) and (13) are given by (9), (10).
Substituting (9) and (10) into (11), we get the desired result.

By Lemma 3.1 and Theorem 3.1, the following result can be established.

Theorem 3.2. Let X,B ∈ Cn×m be the same as those in Theorem 3.1. Then the matrix
equations AX = B has a solution in AHHCn×n if and only if

XH
i Bi = −BH

i Xi and Bi = BiX
+
i Xi, i = 1, 2. (14)

Moreover, the solution can be expressed as

A = Q

(

E1 0
0 E2

)

QH , (15)

where

E1 = U

(

UH
1 B1V1Σ

−1 −Σ−1V H
1 BH

1 U2

UH
2 B1V1Σ

−1 G1

)

UH , G1 ∈ AHC(k−r)×(k−r),

E2 = M

(

MH
1 B2N1Γ

−1 −Γ−1NH
1 B

H
2 M2

MH
2 B2N1Γ

−1 G2

)

MH , G2 ∈ AHC(k−s)×(k−s).
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4 The expression of the solution for problem II

In this section, we prove the existence and uniqueness of the solution and derive an expression
of the solution for Problem II.

Theorem 4.1. Given A∗ ∈ Cn×n. Then the problem II has a unique solution Â. Moreover, we
have

Â = Q

(

Ê1 0

0 Ê2

)

QH , (16)

where

Ê1 = U

(

φ ∗ (UH
1 B1V1Σ − ΣV H

1 BH
1 U1) −Σ−1V H

1 BH
1 U2

UH
2 B1V1Σ

−1 1

2
(Q1U2)

H(A∗ −A∗H)Q1U2

)

UH ,

Ê2 = M

(

ψ ∗ (MH
1 B2N1Γ − ΓNH

1 B
H
2 M1) −Γ−1NH

1 B
H
2 M2

MH
2 B2N1Γ

−1 1

2
(Q2M2)

H(A∗ −A∗H)Q2M2

)

MH .

Proof. It is not difficult to prove from (8) that the solution set SX,B of the Problem I is a closed
convex set. So, we get from [15] that for A∗ ∈ Cn×n, it has a unique optimal approximation.
For A∗ ∈ Cn×n, let

A = QHA∗Q
∆
=

(

A11 A12

A22 A22

)

, (17)

where
A11 = QH

1 A
∗Q1, A12 = QH

1 A
∗Q2, A21 = QH

2 A
∗Q1, A22 = QH

2 A
∗Q2.

For any A ∈ SX,B, by (8) and (17), we have

‖A∗ −A‖2 =

∥

∥

∥

∥

A∗ −Q

(

E1 0
0 E2

)

QH

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

A11 A12

A21 A22

)

−
(

E1 0
0 E2

)∥

∥

∥

∥

2

= ‖A12‖2 + ‖A21‖2 + ‖A11 − E1‖2 + ‖A22 − E2‖2.

(18)

Since

‖A11 − E1‖2 = ‖UHA11U − UHE1U‖2

=

∥

∥

∥

∥

(

UH
1 A11U1 UH

1 A11U2

UH
2 A11U1 UH

2 A11U2

)

−
(

φ ∗ (UH
1 B1V1Σ − ΣV H

1 BH
1 U1) −Σ−1V H

1 BH
1 U2

UH
2 B1V1Σ

−1 G1

)
∥

∥

∥

∥

2

= ‖UH
1 A11U1 − φ ∗ (UH

1 B1V1Σ − ΣV H
1 BH

1 U1)‖2 + ‖UH
1 A11U2 + Σ−1V H

1 BH
1 U2‖2

+‖UH
2 A11U1 − UH

2 B1V1Σ
−1‖2 + ‖UH

2 A11U2 −G1‖2

= ‖UH
1 A11U1 − φ ∗ (UH

1 B1V1Σ − ΣV H
1 BH

1 U1)‖2 + ‖UH
1 A11U2 + Σ−1V H

1 BH
1 U2‖2

+‖UH
2 A11U1 − UH

2 B1V1Σ
−1‖2 + ‖1

2
UH

2 (A11 +A
H

11)U2‖2

+‖1

2
UH

2 (A11 −A
H

11)U2 −G1‖2. (19)

Similarly, we have

‖A22 − E2‖2 = ‖MH
1 A22M1 − ψ ∗ (MH

1 B2N1Γ − ΓNH
1 B

H
2 M1)‖2+

‖MH
1 A22M2 + Γ−1NH

1 B
H
2 M2‖2 + ‖MH

2 A22M1 −MH
2 B2N1Γ

−1‖2+

‖ 1
2M

H
2 (A22 +A

H

22)M2‖2 + ‖ 1
2M

H
2 (A22 −A

H

22)M2 −G2‖2.

(20)
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Hence, the equalities (18), (19) and (20) imply that the problem min
A∈SX,B

‖A∗ − A‖ is equivalent

to the following problems

min
G1∈AHC(k−r)×(k−r)

‖1

2
UH

2 (A11 −A
H

11)U2 −G1‖ (21)

and

min
G2∈AHC(k−s)×(k−s)

‖1

2
MH

2 (A22 −A
H

22)M2 −G2‖2. (22)

It is obvious that the solutions of problems (21) and (22) are given by

G1 =
1

2
UH

2 (A11 −A
H

11)U2 =
1

2
UH

2 Q
H
1 (A∗ −A∗H)Q1U2 (23)

and

G2 =
1

2
MH

2 (A22 −A
H

22)M2 =
1

2
MH

2 Q
H
2 (A∗ −A∗H)Q2U2 (24)

respectively. Substituting (23) and (24) to (9) and (10), respectively, we then obtain the solution
(16) of Problem II. The proof is completed.

References

[1] Golub G H, Welsch J H. Calculation of Gauss quadrature rules. Math. Comput., 1969, 23: 221-230.
[2] Dai H, Lancaster P. Linear matrix equations from an inverse problem of vibration theory. Linear

Algebra Appl., 1996, 246: 31-47.
[3] Woodgate K G. Least-squares solution of F = PG over positive semidefinite symmetric P. Linear

Algebra Appl., 1996, 245: 171-190.
[4] Hald O. On discrete and numerical Sturm-Liouville problems, Ph. D. dissertation. Dept. Mathe-

matics, New York Univ., New York, 1972.
[5] Fausett D W, Fulton C T. Large least squares problems involving Kronecker products. SIAM J.

Matrix Anal. Appl., 1994, 15: 219-227.
[6] Zha H Y. Comments on large least squares problems involving Kronecker products. SIAM J. Matrix

Anal. Appl., 1995, 16(4): 1172.
[7] Allwright J C, Woodgate K G. Errata and addendum to: positive semidefinite matrices character-

ization via conical hulls and least-squares solutions of a matrix equation. SIAM J. Control Optim.,
1990, 28: 250-251.

[8] Allwright J C. Positive semidefinite matrices: Characterization via conical hulls and least-squares
solution of a matrix equation. SIAM J. Control Optim., 1988, 26: 537-557.

[9] Sun, J G. Least-squares solutions of a class of inverse eigenvalue problems (in Chinese). Mathematic
Numeric Sinica, 1987, 9: 206-216.

[10] Sun J G. Two kinds of inverse eigenvalue problems for real symmetric matrices (in Chinese). Math-
ematica Numeric Sinica, 1988, 3: 282-290.

[11] Xie D X, Zhang L. Least-squares solutions of inverse problems for anti-symmetric matrices (in
Chinese). J. Eng. Math., 1993, 10(4): 25-34.

[12] Xie D X. Least-squares solution for inverse eigenpair problem of nonnegative definite matrices.
Comput. Math. Appl., 2000, 40: 1241-1251.

[13] Xie D X, Zhang L, Hu X Y. Least-squares solutions of inverse problems for bisymmetric matrices
(in Chinese). Math. Numer. Sin., 2000, 22(1): 29-40.

[14] Golub G H, Van Loan C F. Matrix computations. The Johns Hopkins University Press, Baltimore,
MD, 1989

[15] Cheney E W. Introduction to approximation theory. McGraw-Hill, 1996.
[16] Zhang, L. The approximation on the closed convex cone and its numerical application (in Chinese).

Hunan Annals of Math., 1986, 6: 43-48.


