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Abstract. The restarted FOM method presented by Simoncini [7] according to the natural
collinearity of all residuals is an efficient method for solving shifted systems, which generates
the same Krylov subspace when the shifts are handled simultaneously. However, restarting
slows down the convergence. We present a practical method for solving the shifted systems by
adding some Ritz vectors into the Krylov subspace to form an augmented Krylov subspace.
Numerical experiments illustrate that the augmented FOM approach (restarted version) can
converge more quickly than the restarted FOM method.
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1 Introduction

Given a real large nonsymmetric matrix A, we are interested in solving the following shifted
systems

Ax = b (1)

and
Âx = b, (2)

where Â = A + σI for several (say a few hundreds; see e.g. [7]) σ, σ ∈ R. These kinds of linear
systems arise in many fields. For instance, in image restorations, numerical methods for integral
equations, structural dynamics, and QCD problems.

The system (1) can be called seed system and (2) called add system. It is well known
that the Krylov subspace Km(A, r0) = span{r0, Ar0, · · · , Am−1r0} is the same as Km(Â, r̂0) =
span{r̂0, Âr̂0, · · · , Âm−1r̂0} with r̂0 = β0r0. Therefore, if we apply a Krylov subspace method to
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solve (1) and (2) simultaneously, the basis has to be calculated only once. Then the iterative
solution of the add system may be calculated at a very low extra expense.

However, the Krylov subspace required to satisfactorily approximate (1) and (2) appears to
be too large, and the computational cost is expensive, so the method needs to be restarted,
taking the current system residual as a new generating vector. If the new Krylov subspace is the
same for all shifted systems, the computational efficiency can be maintained. We want to get
the identical basis vectors for Km(A, rm) and Km(Â, r̂m), so the collinearity of residuals rm and
r̂m is required. Simoncini[7] gave the natural collinearity of rm and r̂m for FOM by computing

rm = b − Axm = r0 − AVmdm = −hm+1,mvm+1e
T
mdm = βvm+1, (3)

r̂m = b − Âx̂m = r̂0 − ÂVmd̂m = −ĥm+1,mvm+1e
T
md̂m = β̂vm+1. (4)

So restarting can also be employed in the shifted case. For GMRES, the natural collinearity of
residuals are not satisfied. Frommer and Glassner [1] give a variant of GMRES by forcing the
residual r̂m to be collinear to rm, so restarting can also be employed. However restarting will
slow down the convergence since some information is lost when restarting.

In [3,4], we have presented restarted GMRES and restarted FOM augmented with exact
eigenvectors to solve system (1) and (2) based on the Morgan’s augmented method [5] and
the idea of Frommer and Glassner [1]. However, these methods are generally impractical since
the exact eigenvectors are difficult or impossible to obtain. In this paper, we show that FOM
augmented by adding some Ritz vectors, instead of exact eigenvectors, can also be used to solve
the shifted systems (1) and (2). This version of augmented FOM (denoted as shifted FOM-R) can
practically be implemented since the Ritz vectors can be easily derived. Numerical experiments
illustrate the efficiency of the method.

2 Review of some known facts

In [5], Morgan presented an augmented Krylov subspace method by adding some eigenvectors
zi associated with a few of the smallest eigenvalues of A into the standard Krylov subspace to
form an augmented Krylov subspace

Km,l(A, r0, zi) = span{r0, Ar0, · · · , Am−1r0, z1, · · · , zl}.

Let m be the dimension of the standard Krylov subspaceKm(A, r0) and Vm = [v1, · · · , vm] is the
basis of the subspace. Suppose l eigenvectors z1, · · · , zl are added into the subspace. Let Ws =
[v1, · · · , vm, z1, · · · , zl], Qs+1 = [v1, · · · , vm+1, q1, · · · , ql], where qi is formed by orthogonalizing
the vectors Azi against the previous columns of Qs+1. By the augmented Arnoldi process [5,6],
we have the Arnoldi factorization

AWs = Qs+1H̄s (s = m + l), (1)

where H̄s is an (s + 1)× s upper-Hessenberg matrix. An augmented Krylov subspace method is
a project process on the augmented subspace Km,l(A, r0, zi).

In [4], we have shown that the restarted FOM method augmented with exact eigenvectors
(denoted as shifted FOM-E) can be used to solve the shifted systems (1) and (2). In that case, we
want to derive the approximate solution of the seed system and the add system in the augmented
Krylov subspace Km,l(A, r0, zi). According to FOM , the approximate solution of the seed system
xs = x0 + Wsds can be obtained with ds = H−1

s ‖r0‖2e1, and by forcing the residual of the add
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system r̂s to be collinear to the residual of the seed system rs, the approximate solution of the
add system x̂s = x̂0 + Wsd̂s can be obtained by solving the following linear system

(

Ĥm G1(I + σΛ−1
l ) 0

0 G2(I + σΛ−1
l ) −hs+1,sele

T
s ds

)





d̂m

α̂
βs



 =

(

β0‖r0‖2e1

0

)

, (2)

where Ĥm = H̄m + σ
[

Im
0

]

, Λl = diag(λ1, · · · , λl), λ1, · · · , λl are the l smallest eigenvalues of

A, and d̂s =

[

d̂m
α̂

]

.

In [4], we show that the above equation (2) has a unique solution under some conditions.

Theorem 2.1 ( [4]). Assume that Km+1,l(A, r0, zi) is the subspace with dimension s+1, β0 6= 0

and λi +σ 6= 0. Then the system (2) has a unique solution (d̂m, α̂, βs) if and only if pm(−σ) 6= 0.
where pm is a residual polynomial with degree m, i.e., rm = pm(A)r0.

3 Augmented FOM with Ritz vectors

In practice, the eigenvalues and the eigenvectors are difficult or impossible to obtain, and what
we can get is only the approximate eigenvalues and eigenvectors, for example, the Ritz values
and Ritz vectors. In this section, we show that the restarted FOM method augmented with the
Ritz vectors can be used to solve the shifted systems (1) and (2).

By the Arnoldi process, we have the following relation

AVm = VmHm + vm+1hm+1,meT
m. (1)

Assume that Hmpi = θipi, i = 1, · · · , l and θ1, · · · , θl are the l smallest eigenvalues of Hm,
and p1, · · · , pl are the corresponding eigenvectors. Then the Ritz value θi is the approximate
eigenvalue of A, and the Ritz vector yi = Vmpi is the approximate eigenvector. According to (1),
we get

Ayi − θiyi = AVmpi − θiVmpi

= VmHmpi − θiVmpi + vm+1hm+1,meT
mpi

= Vm(Hmpi − θipi) + vm+1hm+1,meT
mpi

= vm+1hm+1,meT
mpi

= δivm+1

(2)

where δi = hm+1,meT
mpi. The matrix form of (2) is

AYl = YlΘl + vm+1∆l, (3)

where Yl = [y1, · · · , yl], Θl = diag(θ1, · · · , θl) and ∆l = [δ1, · · · , δl].

Suppose that we have obtained the approximate solution x
(k)
s of the seed system and the

l Ritz vectors y
(k)
1 , · · · , y

(k)
l associated with the l smallest Ritz values in the Krylov subspace

Km(A, r
(k)
0 ), where the superscript (k) denotes the restart number, k = 1, 2, · · · . When the

residual norm does not reach the tolerance, we consider restarting in the Krylov subspace

Km,l(A, r
(k+1)
0 , y

(k)
i ), that is, we compute an approximate solution x

(k+1)
s such that x

(k+1)
s −

x
(k+1)
0 ∈ Km,l(A, r

(k+1)
0 , y

(k)
i ) with r

(k+1)
0 = r

(k)
s and x

(k+1)
0 = x

(k)
s . Thus x

(k+1)
s can be written

as

x(k+1)
s = x

(k+1)
0 + q

(k+1)
m−1 (A)r

(k+1)
0 +

l
∑

i=1

α
(k)
i y

(k)
i ,
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where q
(k+1)
m−1 (t) is a polynomial of degree ≤ m − 1. The residual r

(k+1)
s = b − Ax

(k+1)
s is

r(k+1)
s = r

(k+1)
0 − Aq

(k+1)
m−1 (A)r

(k+1)
0 −

l
∑

i=1

α
(k)
i Ay

(k)
i = p(k+1)

m (A)r
(k+1)
0 −

l
∑

i=1

α
(k)
i Ay

(k)
i ,

where p
(k+1)
m (t) = 1 − tq

(k+1)
m−1 (t) with p

(k+1)
m (0) = 1. For the add system (2), we similarly have

x̂(k+1)
s = x̂

(k+1)
0 + q̂

(k+1)
m−1 (Â)r̂

(k+1)
0 +

l
∑

i=1

α̂
(k)
i y

(k)
i ,

and

r̂(k+1)
s = b − Âx̂(k+1)

s = p̂(k+1)
m (Â)r̂

(k+1)
0 −

l
∑

i=1

α̂
(k)
i Ây

(k)
i ,

where p̂
(k+1)
m (t) is the polynomial of degree ≤ m with p̂

(k+1)
m (0) = 1.

Now assume the initial residuals are collinear r̂
(k+1)
0 = β

(k+1)
0 r

(k+1)
0 , β

(k+1)
0 ∈ R. Then we

require that
r̂(k+1)
s = β(k+1)

s r(k+1)
s , β(k+1)

s ∈ R. (4)

Equivalently, we have

β
(k+1)
0 p̂(k+1)

m (A + σI)r
(k+1)
0 −

l
∑

i=1

α̂
(k)
i (A + σI)y

(k)
i = β(k+1)

s (p(k+1)
m (A)r

(k+1)
0 −

l
∑

i=1

α
(k)
i Ay

(k)
i ).

It follows from Ay
(k)
i = δ

(k)
i v

(k)
m+1 + θ

(k)
i y

(k)
i , (A + σI)y

(k)
i = δ

(k)
i v

(k)
m+1 + (θ

(k)
i + σ)y

(k)
i , (3) and

r
(k+1)
0 = r

(k)
m = β(k+1)v

(k)
m+1 that

β
(k+1)
0 p̂(k+1)

m (A + σI)r
(k+1)
0 −

l
∑

i=1

α̂
(k)
i (δ

(k)
i

r
(k+1)
0

β(k+1)
+ (θ

(k)
i + σ)y

(k)
i )

= β(k+1)
s (p(k+1)

m (A)r
(k+1)
0 −

l
∑

i=1

α
(k)
i (δ

(k)
i

r
(k+1)
0

β(k+1)
+ θ

(k)
i y

(k)
i )).

By assumption that the vectors r
(k+1)
0 , Ar

(k+1)
0 , · · · , Am−1r

(k+1)
0 , y

(k)
1 , · · · , y

(k)
l are linearly inde-

pendent, we can deduce that

β
(k+1)
0 p̂(k+1)

m (t + σ) −
l
∑

i=1

δ
(k)
i

β(k+1)
(α̂

(k)
i − β(k+1)

s α
(k)
i ) − β(k+1)

s p(k+1)
m (t) = 0, (5)

α̂
(k)
i (θ

(k)
i + σ) = β(k+1)

s α
(k)
i θ

(k)
i , i = 1, · · · , l. (6)

For p̂
(k+1)
m (0) = 1, (5) and (6) can be written as the following system,



















β(k+1)p
(k+1)
m (−σ) −

l
∑

i=1

δ
(k)
i α

(k)
i δ

(k)
1 · · · δ

(k)
l

α
(k)
1 θ

(k)
1 θ

(k)
1 + σ · · · 0

...
... · · ·

...

α
(k)
l θ

(k)
l 0 · · · θ

(k)
l + σ































β
(k+1)
s

α̂
(k)
1
...

α̂
(k)
l













=











β̂(k+1)

0
...
0











,

(7)

where β̂(k+1) = β
(k+1)
0 β(k+1). Thus, we get the following theorem.
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Theorem 3.1. Assume that Km+1,l(A, r
(k+1)
0 , y

(k)
i ) is the subspace with dimension s+1, β̂(k+1) 6=

0. Then there exists a polynomial p̂
(k+1)
m and number β

(k+1)
s , α̂

(k)
1 , · · · , α̂

(k)
l satisfying (7) if and

only if θ
(k)
i +σ 6= 0, i = 1, · · · , l and

l
∑

i=1

α
(k)
i δ

(k)
i (

2θ
(k)
i + σ

θ
(k)
i + σ

) 6= β(k+1)p(k+1)
m (−σ). In that case,

p̂(k+1)
m (t) = [β(k+1)β(k+1)

s p(k+1)
m (t − σ) −

l
∑

i=1

δ
(k)
i (α̂

(k)
i − β(k+1)

s α
(k)
i )]/β̂(k+1).

For a given Krylov subspace method, the polynomial pm is usually not calculated in practice.
We now work out how the iterates for (2) satisfying (4) can be practically computed when the
augmented FOM iterates is performed on (1).

Suppose that the Arnoldi vectors v
(k)
1 , · · · , v

(k)
m+1 have been produced by the Arnoldi process

with v
(k)
1 = r

(k)
0 /‖r(k)

0 ‖2, then we get the l Ritz vectors y
(k)
1 , · · · , y

(k)
l associated with the l

smallest Ritz values and the approximate solution x
(k)
m in the Krylov subspace Km(A, r

(k)
0 ). The

relation (3) holds for k. When the residual norm r
(k)
m does not reach the tolerance, we consider

restarting with

r
(k+1)
0 = r(k)

m , v
(k+1)
1 = r

(k+1)
0 /‖r(k+1)

0 ‖2 and x
(k+1)
0 = x(k)

m .

By (3), r
(k+1)
0 = β(k+1)v

(k)
m+1, we have v

(k+1)
1 = v

(k)
m+1. We add the l Ritz vectors into the Krylov

subspace. Denote

W (k+1)
s = [v

(k+1)
1 , · · · , v(k+1)

m , y
(k)
1 , · · · , y

(k)
l ], Q

(k+1)
s+1 = [v

(k+1)
1 , · · · , v

(k+1)
m+1 , q

(k)
1 · · · , q

(k)
l ],

where q
(k)
i is formed by orthogonalizing the vectors Ay

(k)
i against the previous columns of Q

(k+1)
s+1 .

Then,we have

AW (k+1)
s = Q

(k+1)
s+1 H̄(k+1)

s = Q(k+1)
s H(k+1)

s + h
(k+1)
s+1,sq

(k)
l eT

l ,

where H̄
(k+1)
s is an (s + 1) × s upper-Hessenberg matrix and H

(k+1)
s obtained from H̄

(k+1)
s by

deleting its last row.

The augmented FOM approximate solution x
(k+1)
s will be derived by

x(k+1)
s = x

(k+1)
0 + W (k+1)

s d(k+1)
s ,

where
d(k+1)

s = (H(k+1)
s )−1β(k+1)e1 with β(k+1) = ‖r(k+1)

0 ‖2.

The residual
r(k+1)
s = b − Ax(k+1)

s = r
(k+1)
0 − AW (k+1)

s d(k+1)
s

has the following expression

r(k+1)
s = Q(k+1)

s β(k+1)e1 − Q(k+1)
s H(k+1)

s d(k+1)
s − h

(k+1)
s+1,sq

(k)
l eT

s d(k+1)
s = −h

(k+1)
s+1,sq

(k)
l eT

s d(k+1)
s .

Let

W (k+1)
s = [V (k+1)

m , Y
(k)
l ], Q

(k+1)
s+1 = [V

(k+1)
m+1 , Q

(k)
l ], H̄(k+1)

s =

[

H̄
(k+1)
m G

(k+1)
1

0 G
(k+1)
2

]

,
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where

V (k+1)
m = [v

(k+1)
1 , · · · , v(k+1)

m ], Y
(k)
l = [y

(k)
l , · · · , y

(k)
l ], Q

(k)
l = [q

(k)
1 , · · · , q

(k)
l ].

Since AW
(k+1)
s = Q

(k+1)
s+1 H̄

(k+1)
s and AY

(k)
l = Y

(k)
l Θ

(k)
l + v

(k+1)
1 ∆

(k)
l , we have i

AV (k+1)
m = V

(k+1)
m+1 H̄(k+1)

m ,

AY
(k)
l = V

(k+1)
m+1 G

(k+1)
1 + Q

(k)
l G

(k+1)
2 = Y

(k)
l Θ

(k)
l + v

(k+1)
1 ∆

(k)
l . (8)

Then
ÂY

(k)
l = (A + σI)Y

(k)
l = Y

(k)
l (Θ

(k)
l + σI) + v

(k+1)
1 ∆

(k)
l . (9)

For the add system (2), the following relation holds

ÂV (k+1)
m = V

(k+1)
m+1 Ĥ(k+1)

m ,

where
Ĥ(k+1)

m = H̄(k+1)
m + σ

[

Im
0

]

.

We want to calculate x̂
(k+1)
s = x̂

(k+1)
0 + W

(k+1)
s d̂

(k+1)
s by requiring the collinearity of r

(k+1)
s and

r̂
(k+1)
s . Let d̂

(k+1)
s =

[

d̂
(k+1)
m , α̂(k+1)

]T

. According to the collinearity, we have

r̂
(k+1)
s = β

(k+1)
s r

(k+1)
s ,

b − Â(x̂
(k+1)
0 + V

(k+1)
m d̂

(k+1)
m + Y

(k)
l α̂(k+1)) = β

(k+1)
s (−h

(k+1)
s+1,sq

(k)
l eT

s d
(k+1)
s ),

β
(k+1)
0 r

(k+1)
0 − ÂV

(k+1)
m d̂

(k+1)
m − ÂY

(k)
l α̂(k+1) = β

(k+1)
s (−h

(k+1)
s+1,sq

(k)
l eT

s d
(k+1)
s ),

V
(k+1)
m+1 Ĥ

(k+1)
m d̂

(k+1)
m − β

(k+1)
s h

(k+1)
s+1,sq

(k)
l eT

s d
(k+1)
s = β

(k+1)
0 ‖r(k+1)

0 ‖2v
(k+1)
1 − ÂY

(k)
l α̂(k+1).

Let α = −h
(k+1)
s+1,sq

(k)
l eT

s d
(k+1)
s and β̂(k+1) = β

(k+1)
0 ‖r(k+1)

0 ‖2. It follows from (8) that

Y
(k)
l = (V

(k+1)
m+1 G

(k+1)
1 + Q

(k)
l G

(k+1)
2 − v

(k+1)
1 ∆

(k)
l )(Θ

(k)
l )−1.

Consequently,

ÂY
(k)
l = (V

(k+1)
m+1 G

(k+1)
1 + Q

(k)
l G

(k+1)
2 )(I + σ(Θ

(k)
l )−1) − σv

(k+1)
1 ∆

(k)
l (Θ

(k)
l )−1.

Therefore, we obtain

V
(k+1)
m+1 Ĥ(k+1)

m d̂(k+1)
m + β(k+1)

s α + α̂(k+1)[(V
(k+1)
m+1 G

(k+1)
1

+Q
(k)
l G

(k+1)
2 )(I + σ(Θ

(k)
l )−1) − σv

(k+1)
1 ∆

(k)
l (Θ

(k)
l )−1] = β̂(k+1)v

(k+1)
1 . (10)

Multiplying (10) from left by QT
s+1 =

[

(V
(k+1)
m+1 )T

(Q
(k)
l )T

]

, and noting that (V
(k+1)
m+1 )T Q

(k)
l = 0, we

have
{

Ĥ
(k+1)
m d̂

(k+1)
m + [G

(k+1)
1 (I + σ(Θ

(k)
l )−1) − σe1∆

(k)
l (Θ

(k)
l )−1]α̂(k+1) = β̂(k+1)e1

G
(k+1)
2 (I + σ(Θ

(k)
l )−1)α̂(k+1) + β

(k+1)
s α = 0,
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which can be written as the following linear system with unknowns d̂
(k+1)
m , α̂(k+1) and β

(k+1)
s :

(

Ĥ
(k+1)
m G

(k+1)
1 (I + σ(Θ

(k)
l )−1) − σe1∆

(k)
l (Θ

(k)
l )−1 0

0 G
(k+1)
2 (I + σ(Θ

(k)
l )−1) α

)







d̂
(k+1)
m

α̂(k+1)

β
(k+1)
s






=

(

β̂(k+1)e1

0

)

.

(11)

Theorem 3.2. Assume that Km+1,l(A, r
(k+1)
0 , y

(k)
i ) is the subspace with dimension s+1, β̂(k+1) 6=

0. Then the system (11) has a unique solution (d̂
(k+1)
m , α̂(k+1), β

(k+1)
s ) if and only if θ

(k)
i + σ 6=

0, i = 1, · · · , l and
l
∑

i=1

α
(k)
i δ

(k)
i (

2θ
(k)
i + σ

θ
(k)
i + σ

) 6= β(k+1)p(k+1)
m (−σ).

In the augmented Krylov subspace, the relation (2) does not hold any more, so we consider
dividing the algorithm into two parts: for odd restarting number, we use the original method
presented by Simoncini [7], then we calculate the Ritz values and the Ritz vectors of A in the
Krylov subspace Km(A, r0); for even restarting number, we add the Ritz vectors into the Krylov
subspace to form an augmented Krylov subspace Km,l(A, r0, yi), then we use the augmented
FOM method to solve the shifted systems.

We now present the algorithm as the following for solving the shifted system (1) and (2).

Algorithm: Shifted FOM-R (restarted version)
Give a initial guess x0, and x̂0 = x0.

r0 = b − Ax0, r̂0 = r0, β0 = 1.
k = 1, 2, · · · until converge

If the step k is odd,

1. Set v1 = r0/‖r0‖2.

2. Arnoldi procedure with v1 generates Vs = [v1, · · · , vs] and H̄s: AVs = Vs+1H̄s.

3. Compute ds = H−1
s ‖r0‖2e1 and xs = x0 + Vsds.

4. Set Ȟs = Hs + σI.

5. Compute d̂s = Ȟ−1
s β0‖r0‖2e1 and x̂s = x̂0 + Vsd̂s.

6. Compute rs = b − Axs.

7. If ‖rs‖2 < ǫ stop, else go to next step.

8. Seek the l eigenvectors Pl = [p1, · · · , pl] associated with the l smallest eigenvalues

θ1, · · · , θl from Hs: Hspi = θipi, compute Yl = [y1, · · · , yl] = VsPl.

9. Set r0 = rs, r̂0 = r̂s and β0 = eT
s d̂s/eT

s ds.

End for odd k.

If the step k is even,

1. Set v1 = r0/‖r0‖2.

2. Augmented Arnoldi procedure with v1 and y1, · · · , yl generates

Ws = [v1, · · · , vm, y1, · · · , yl] and H̄s : AWs = Qs+1H̄s.

3. Compute ds = H−1
s ‖r0‖2e1 and xs = x0 + Wsds.
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Table 1: Example 1: Number of restarts to convergence of the seed system and the residual norm of the

add system when the residual norm of seed system reaches the tolerance

shifted FOM(s = 20) shifted FOM-E(m = 16, l = 4) shifted FOM-R(m = 16, l = 4)

k 26 12 19

‖r̂m‖2 5.946822e-012 1.966866e-009 5.673352e-012

Table 2: Example 1: Number of restarts to convergence of the seed system and the add system respec-

tively (i.e. the residual norm reached the tolerance).

shifted FOM(s = 20) shifted FOM-E(m = 16, l = 4) shifted FOM-R(m = 16, l = 4)

k(‖rm‖2) 26 12 19

k(‖r̂m‖2) 16 11 13

4. Compute α = −hs+1,sele
T
s ds.

5. Solve

(

Ĥm G1(I + σΘ−1
l ) − σe1∆lΘ

−1
l 0

0 G2(I + σΘ−1
l ) α

)





d̂m

α̂
βs



 =

(

β0‖r0‖2e1

0

)

.

6. x̂s = x̂0 + Wsd̂s, where d̂s =

[

d̂m

α̂

]

.

7. rs = b − Axs.

8. If ‖rs‖2 < ε stop, else go to next step.

9. Set r0 = rs, r̂0 = r̂s and β0 = βs.

End for even k.

4 Numerical experiments

In this section ,we give some numerical experiments to illustrate the convergence behavior of
three methods (shifted FOM presented by Simoncini [7], shifted FOM-E, and shifted FOM-R)
and to compare their performance. In order to make the comparison, the sizes of Krylov subspace
for the same example are identical. The tests start with x0 = x̂0 = 0 and σ = 1, and stop when
the residual norm reach the tolerance (tol = 10−7).

Example 1 Let A is an upper bidiagonal matrix. The entries on the main diagonal are
1, 2, · · · , 1000 and the superdiagonal are 0.1, so the eigenvalues of A are 1, 2, · · · , 1000.

Fig. 1 plots the convergence history of the seed system and add system by using the three
methods. The tests are stopped when the residual norm of the seed system and the add system
have reached 10−7 respectively. Table 1 shows the residual accuracy of the add system when
the residual norm of the seed system has reached the tolerance. Table 2 shows the restart
number when the residual norm of the seed system and that of the add system have reached
the tolerance(10−7) respectively. We observed that the add system has good convergence than
the seed system when the two systems are handled simultaneously. This is because the smallest
eigenvalue of A + σI is larger than the smallest eigenvalue of A. Shifted FOM-E is the best but
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Figure 1: Example 1: Convergence history of the residual for both the seed system and the add system

of three methods. The notation FOM1 denote the residual of the seed system by the FOM method and

FOM2 denote the residual of the add system by the FOM method.

the method is impractical since the exact eigenvectors can not be obtained, and shifted FOM-R
is efficient than shifted FOM.

Example 2 Let A be an upper bidiagonal matrix with the entries 0.01, 0.02, 3, 4, 5, 6, · · · , 1000
on the main diagonal, and 0.1 on the superdiagonal.

For the Example 2, the shifted FOM method does not converge after 100 iterations, but the
shifted FOM-E method and the shifted FOM-R still keep a good convergence. The numerical
results are provided in Table 3. The notation ∗ means the residual norm of the seed system have
not reached the tolerance after 100 iterations.

Example 3 We consider the partial differential equation

−uxx − uyy + γ(ux + uy) = f (γ ≥ 0) (1)

on the unit square with homogeneous Dirichlet boundary condition.
The five-point centered difference is used to discretize (1) on 45 × 45 grid with mesh size

h = 1/46 and natural ordering. The resulting linear system has a coefficient matrix A of order
n = 2025. It is well known that the matrix A has the eigenvalues

λp,q = 2[2 −
√

1 − (γh/2)2(cos phπ + cos qhπ)], p, q = 1, · · · , 45.

and for γ = 0, the matrix A has the eigenvectors

vp,q =
√

2h(sin qhπ · zT
p , sin 2qhπ · zT

p , · · · , sin 45qhπ · zT
p )T , p, q = 1, 2, · · · , 45,

where
zp =

√
2h(sin phπ, sin 2phπ, · · · , sin 45phπ)T , p = 1, · · · , 45.

We only consider the case γ = 0, because in that case we have the exact eigenvalues and
eigenvectors.

We can see from Table 4 and Table 5 that both the shifted FOM-E method and the shifted
FOM-R method enjoy a good convergence behaviors for both the seed system and the add system.
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Table 3: Example 2: Number of restarts to convergence of the seed system and the residual norm of the

add system when the residual norm of seed system reached the tolerance.

shifted FOM(s = 70) shifted FOM-E(m = 67, l = 3) shifted FOM-R(m = 67, l = 3)

k ∗ 3 11

‖r̂m‖2 ∗ 5.511425e-011 1.297446e-011

Table 4: Example 3: Number of restarts of the seed system and the residual norm of the add system

when the residual norm of seed system reached the tolerance.

shifted FOM(s=25) shifted FOM-E(m = 24, l = 1) shifted FOM-R(m = 24, l = 1)

k 12 5 8

‖r̂m‖2 3.799690e-012 2.400136e-014 3.117452e-013

Table 5: Example 3: Number of restarts to convergence of the seed system and the add system respec-

tively (i.e. the residual norm reached the tolerance).

shifted FOM(s = 25) shifted FOM-E(m = 24, l = 1) shifted FOM-R(m = 24, l = 1)

k(‖rm‖2) 12 5 8

k(‖r̂m‖2) 2 2 2

The shifted FOM-E method is the best and the shifted FOM-R method is better. However, the
shifted FOM-E is an impractical approach.

5 Conclusion

In this paper we presented a restarted FOM method augmented with some Ritz vectors for solving
the shifted systems simultaneously. The numerical experiments show that the augmented FOM
method can converge more quickly than the original FOM method. The shifted FOM-R is a
practical method, and the Shifted FOM-E has the best convergence but is impractical.
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