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Abstract. Two dynamical system methods are studied for solving linear ill-posed problems
with both operator and right-hand nonexact. The methods solve a Cauchy problem for a
linear operator equation which possesses a global solution. The limit of the global solution at
infinity solves the original linear equation. Moreover, we also present a convergent iterative
process for solving the Cauchy problem.
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1 Introduction

Dynamical systems method (DSM) is a general method for solving operator equations, especially
for non-linear, ill-posed as well as well-posed operator equations [1-6]. In [5, 6], Ramm proposed
a DSM for linear ill-posed problem with right hand nonexact. However, in practice, not only
the right-hand side of equations but also the operators are approximately given. This paper
is to provide a DSM for linear operator equation with not only noisy data but also perturbed
operators.

We first briefly describe the dynamical systems method for solving operator equations. Con-
sider an operator equation

Au = f, f ∈ H (1)

Let us denote by (Σ) the following assumption:
(Σ): A is a linear, bounded operator in H , defined on all of H ; the range R(A) is not closed,

so (1) is ill-posed problem. There is a y such that Ay = f, y ∈ N(A)⊥, where N(A) is the
null-space of A.

Let u̇ denote the derivative of u with respect to time. Consider the following dynamical
system (the Cauchy problem):

u̇ = Φ(t, u), t > 0, u(0) = u0 (2)
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where Φ(t, u) is globally Lipchitz with respect to u ∈ H and continuous with respect to t ≥ 0:

sup
u,v∈H,t∈[0,∞)

‖Φ(t, u)− Φ(t, v)‖ ≤ c‖u − v‖, c = const > 0. (3)

Problem (2) has a global solution if (3) holds. The DSM for solving (1) consists of solving (2),
where Φ is so chosen that the following three conditions hold:

∃u(t) ∀t > 0; ∃y := u(∞) := lim
t→∞

u(t); Ay = f. (4)

For real number h > 0, let Ah be a bounded linear operator in a real Hilbert space H such
that

‖A −Ah‖ ≤ h. (5)

Problem (1) with noisy data f δ, ‖f − f δ‖ ≤ δ and perturbed operator Ah, satisfying (5), given
in place of f and A, respectively, generates the problem:

u̇δ,h = Φδ,h(t, u), t > 0, uδ,h(0) = u0. (6)

The solution uδ,h to (6) at t = tδ,h, will have the property

lim
r→0

‖uδ,h(tδ,h) − y‖ = 0, (7)

where r =
√

δ2 + h2. The choice of tδ,h with this property is called the stopping rule. One has
usually limr→0 tδ,h = ∞.

We organize this paper into four sections. In Section 2, we describe one DSM for solving
linear problem. In Section 3, we present another version of DSM. In Section 4, we propose two
convergent iterative processes to solve the two Cauchy problems.

2 DSM I for solving the linear problem

Consider the Cauchy problem

u̇δ,h(t) = Φδ,h(t, uδ,h(t)), t > 0, uδ,h(0) = u0 (8)

where Φδ,h(t, uδ,h(t)) = −[Bhuδ,h(t) + ε(t)uδ,h(t) −Fδ,h], Bh := A∗
hAh, Fδ,h = A∗

hf δ and

ε(t) ∈ C1[0,∞), ε(t) > 0, ε(t) ց 0 (t → ∞), (9)

|ε̇(t)|
ε(t)

5
2

→ 0 (t → ∞). (10)

Lemma 2.1. [5] Let A and Ah are linear operator in a real Hilbert space H, B = A∗A, Bh =
A∗

hAh, ε(t) ∈ C[0,∞) and ε(t) > 0. Then the following inequalities hold

(i). ‖(ε(t) + B)−1A∗‖ ≤ 1

2
√

ε(t)
,

(ii). ‖(ε(t) + B)−1A∗A‖ ≤ 1,

(iii). ‖ε(t)(ε(t) + B)−1‖ ≤ 1.

If A,B are replaced by Ah,Bh, respectively, the above conclusions are still correct.
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Theorem 2.1. Assume that assumption (Σ) on A and (9), (10) on ε(t) satisfied. Then, for

any u0 ∈ H, problem (8) has a unique global solution uδ,h(t). Moreover, there exists tδ,h such

that

lim
r→0

‖uδ,h(tδ,h) − y‖ = 0.

Proof Eq. (8) with bounded operators has unique global solutions. Consider the problem

Bhωδ,h(t) + ε(t)ωδ,h(t) −Fδ,h = 0, (11)

where Bh ≥ 0 and ε(t) > 0, so the solution ωδ,h(t) to (11) exists, is unique and admits the
estimate

‖ωδ,h(t)‖ = ‖(Bh + ε(t))−1Fδ,h‖ ≤ 1

2
√

ε(t)
(δ + ‖f‖).

We differentiate (11) with respect to t and get

Bhω̇δ,h(t) + ε̇(t)ωδ,h(t) + ε(t)ω̇δ,h(t) = 0. (12)

It follows from (12) that

‖ω̇δ,h(t)‖ = ‖(Bh + ε(t))−1ε̇(t)ωδ,h(t)‖ ≤ |ε̇(t)|
2ε

3
2 (t)

(δ + ‖f‖). (13)

Denote zδ,h(t) := uδ,h(t) − ωδ,h(t). Then

żδ,h(t) = −ω̇δ,h(t) − [Bhzδ,h(t) + ε(t)zδ,h(t)], zδ,h(0) = uδ,h(0) − ωδ,h(0).

Denote gδ,h(t) := ‖zδ,h(t)‖. Then we have

gδ,h(t)ġδ,h(t) = (żδ,h(t), zδ,h(t)) ≤ gδ,h(t)‖ω̇δ,h(t)‖ − ε(t)g2
δ,h(t). (14)

Since gδ,h(t) ≥ 0, it follows from (13) and (14) that

ġδ,h(t) ≤ C1 − C2gδ,h(t), gδ,h(0) = ‖uδ,h(0) − ωδ,h(0)‖,

where C1 = |ε̇(t)|
2ε

3
2 (t)

(δ + ‖f‖) > 0 and C2 = ε(t) > 0. This gives

gδ,h(t) ≤ e−
R

t

0
ε(s)ds

[

gδ,h(0) +

∫ t

0

e
R

τ

0
ε(s)ds |ε̇(τ)|

2ε
3
2 (τ)

(δ + ‖f‖)dτ
]

. (15)

It follows from (10) that
∫ ∞
0

ε(s)ds = +∞, see, e.g., [3]. Using L’Hospital’s rule gives

lim
t→∞

∫ t

0 e
R

τ

0
ε(s)ds |ε̇(τ)|

2ε
3
2 (τ)

(δ + ‖f‖)dτ

e
R

t

0
ε(s)ds

= lim
t→∞

|ε̇(t)|
2ε

5
2 (t)

(δ + ‖f‖) = 0,

which yields
lim

t→∞
gδ,h(t) = 0, ∀δ, h > 0. (16)

Next, let us estimate ‖ωδ,h(t) − y‖. By the triangle inequality and Lemma 2.1, one gets

‖ωδ,h(t) − y‖ = ‖(ε(t) + Bh)−1A∗
hf δ − y‖

≤ ‖(ε(t) + Bh)−1A∗
h(f δ − f)‖ + ‖(ε(t) + Bh)−1A∗

hf − (ε(t) + B)−1A∗f‖
+‖(ε(t) + B)−1A∗f − y‖

≤ δ

2
√

ε(t)
+ I1 + I2.
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It follows from Lemma 2.1 and (5) that

I1 = ‖(ε(t) + Bh)−1A∗
hf − (ε(t) + B)−1A∗f‖

= ‖(ε(t) + Bh)−1[ε(t)(A∗
h −A∗) + A∗

h(A−Ah)A∗](ε(t) + AA∗)−1Ay‖

≤ ‖y‖h
√

ε(t)
.

Since f = Ay, one gets

I2 = ‖(ε(t) + B)−1A∗f − y‖ = ‖ε(t)(ε(t) + B)−1y‖ := φ(ε(t), y) := φ(ε(t)). (17)

Consequently,

‖uδ,h(t) − y‖ ≤ gδ,h(t) + C
δ + h
√

ε(t)
+ φ(ε(t)), (18)

where C = max{1/2, ‖y‖}. Let us proof that lim
β→0

φ(β) = 0. Suppose {Eλ} is the spectral family

generated by the operator B = A∗A. Then we have

φ(β)2 = φ(β, y)2 =

∫ ‖A‖2

0

( β

λ + β

)2

d(Eλy, y). (19)

Noting that as β → 0,
β

β + λ

{

→ 0 as λ > 0,
= 1 as λ = 0,

and using the assumption y ∈ N(A)⊥, one gets lim
β→0

φ(β) = 0. If the corresponding stopping

time tδ,h can be taken as the root of equation

√

ε(t) = (δ + h)d, d ∈ (0, 1), (20)

then it is obvious that lim
r→0

tδ,h = ∞. The conclusion holds following from (16), (18) and (20).

3 DSM II for solving the linear system

Consider the Cauchy problem

u̇δ,h(t) = Φδ,h(t, uδ,h(t)), t > 0, uδ,h(0) = u0, (21)

where

Φδ,h(t, uδ,h(t)) = −(Bh + ε(t))−1
[

Bhuδ,h(t) + ε(t)uδ,h(t) −Fδ,h

]

= −uδ,h(t) + (Bh + ε(t))−1Fδ,h.

Theorem 3.1. Let the assumption (Σ) holds. Assume ε(t) > 0 is continuous, monotonically

decaying to zero on [0,∞). Then, for any u0 ∈ H, problem (21) has a unique global solution

uδ,h(t). Moreover, there exists tδ,h such that

lim
r→0

‖uδ,h(tδ,h) − y‖ = 0.
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Proof Denote ρδ,h(t) := uδ,h(t)−uh(t) and gδ := f δ−f , where uh(t) is the solution to problem
(21) with Fδ,h replaced by Fδ. It is easy to obtain

ρ̇δ,h(t) = −ρδ,h(t) + (Bh + ε(t))−1A∗
hgδ, t > 0, ρδ,h(0) = 0. (22)

Therefore, the solution to (21) is

ρδ,h(t) = e−t

∫ t

0

es(Bh + ε(s))−1A∗
hgδds.

It follows from Lemma 2.1 that

‖ρδ,h(t)‖ ≤ δe−t

∫ t

0

es‖(Bh + ε(s))−1A∗
h‖ds ≤ δe−t

∫ t

0

es

2
√

ε(s)
ds ≤ δ

2
√

ε(t)
.

Let u(t) be the solution to problem (21) with Fδ,h and Bh replaced by Fh = A∗
hf and B = A∗A,

respectively. Then one gets

u(t) = u0e
−t + e−t

∫ t

0

es(ε(s) + B)−1A∗fds,

uh(t) = u0e
−t + e−t

∫ t

0

es(ε(s) + Bh)−1A∗
hfds.

Since ‖[(ε(s) + Bh)−1A∗
h − (ε(s) + B)−1A∗]f‖ ≤ ‖y‖h√

ε(s)
, one gets

‖uh(t) − u(t)‖ ≤ e−t

∫ t

0

es‖[(ε(s) + Bh)−1A∗
h − (ε(s) + B)−1A∗]f‖ds

≤ e−t

∫ t

0

es × ‖y‖h
√

ε(s)
ds ≤ ‖y‖h

√

ε(t)
.

Thus, by the triangle inequality, one gets

‖uδ,h(t) − y‖ ≤ ‖uδ,h − uh(t)‖ + ‖uh − u(t)‖ + ‖u(t) − y‖

≤ δ

2
√

ε(t)
+

‖y‖h
√

ε(t)
+ ‖u(t) − y‖

≤ C(δ + h)
√

ε(t)
+ ‖u(t) − y‖.

As a result, the corresponding stopping time tδ,h can be taken as the root of equation:

√

ε(t) = C(δ + h)b, b ∈ (0, 1). (23)

It follows from the condition on ε(t) that limr→0 tδ,h = ∞. One also gets from [4] that
limt→∞ ‖u(t) − y‖ = 0. Thus

lim
r→0

‖uδ,h(tδ,h) − y‖ = 0.
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4 Convergence of the iterative process

Let us use Euler’s method to solve the Cauchy problems (8) and (21) numerically. The numerical
methods are

pn+1
δ,h = pn

δ,h − ωn

[

(Bh + εn)pn
δ,h −Fδ,h

]

, n = 0, 1, · · · , (24)

p0
δ,h := u0, εn := ε(tn), tn :=

n
∑

i=0

ωi, ωi > 0 (25)

qn+1
δ,h = (1 − ωn)qn

δ,h + ωn(Bh + εn)−1Fδ,h, n = 0, 1, · · · , (26)

q0
δ,h := u0, εn := ε(tn), tn :=

n
∑

i=0

ωi, ωi > 0. (27)

In this section, it is proved that under certain conditions the iterative schemes (24) with (25)
and (26) with (27) are convergent.

Lemma 4.1. [7] Assume the sequence of positive number νn satisfies the inequality

νn+1 ≤ (1 − αn)νn + θn,

where

0 < αn ≤ 1,
∞
∑

n=0

αn = ∞, lim
n→∞

θn

αn

= 0.

Then

lim
n→∞

νn = 0.

Theorem 4.1. Assume the conditions of Theorem 2.1 hold. Assume further that

(i). δ is the level of noise in (24): ‖f − f δ‖ ≤ δ, (5) holds and ‖A‖ ≤ N ;

(ii). n(δ, h) is chosen in such a way that limr→0 n(δ, h) = ∞;

(iii). ωn(δ,h) tends to zero monotonically as r → 0, and 0 < ωn(δ,h)εn(δ,h) − cω2
n(δ,h) ≤ 1 with c

defined by (31);

(iv).
∑∞

n=1 ωnεn = ∞, limr→0
ωn(δ,h)

εn(δ,h)
= 0, and limr→0

δ+h√
εn(δ,h)

= 0.

Then

lim
r→0

‖pn(δ,h)
δ,h − y‖ = 0. (28)

Proof Note that uδ,h(t) satisfies (8), one has

uδ,h(tn+1) = uδ,h(tn) + ωnu̇δ,h(tn) +
ω2

n

2
u′′

δ,h(ξn), ξn ∈ (tn, tn+1)

= uδ,h(tn) − ωn[Bhuδ,h(tn) + ε(tn)uδ,h(tn) −Fδ,h]

+
ω2

n

2

{

[

Bh + ε(ξn)
][

Bhuδ,h(ξn) + ε(ξn)uδ,h(ξn) −Fδ,h

]

− ε̇(ξn)uδ,h(ξn)
}

.
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Then

‖pn+1
δ,h − uδ,h(tn+1)‖ ≤ ‖

(

1 − ωnε(tn)
)(

pn
δ,h − uδ,h(tn)

)

− ωnBh(pn
δ,h − uδ,h(tn))‖

+
ω2

n

2
‖
[

Bh + ε(ξn)
][

A∗
h(Ahuδ,h(ξn) − f δ) + ε(ξn)uδ,h(ξn)

]

− ε̇(ξn)uδ,h(ξn)‖

≤ ‖
(

1 − ωnε(tn)
)(

pn
δ,h − uδ,h(tn)

)

− ωnBh(pn
δ,h − uδ,h(tn))‖

+
ω2

n

2

{[

(N + h)2 + ε(ξn)
][

(N + h)
(

(N + h + ε̇(ξn))‖uδ,h(ξn) − y‖

+(h + ε̇(ξn))‖y‖ + δ
)]

+ |ε̇(ξn)|
(

‖uδ,h(ξn) − y‖ + y
)

}

.

By introducing the notation

λn :=
[

(N + h)2 + ε(ξn)
][

(N + h)
(

(N + h + ε̇(ξn))‖uδ,h(ξn) − y‖ + (h + ε̇(ξn))‖y‖ + δ
)]

+|ε̇(ξn)|
(

‖uδ,h(ξn) − y‖ + y
)

,

one obtains from Theorem 2.1 that
lim
r→0

λn(δ,h) = 0.

If ωnεn < 1, then from the condition Bh ≥ 0 one obtains

‖pn+1
δ,h − uδ,h(tn+1)‖

≤
{

(1 − ωnε2
n)2‖pn

δ,h − uδ,h(tn)‖2 + ω2
n‖Bh(pn

δ,h − uδ,h(tn))‖2
}

1
2

+
ω2

nλn

2
. (29)

Applying the elementary estimate

(a + b)2 ≤ (1 + ωnεn)a2 +
(

1 +
1

ωnεn

)

b2

to the right-hand sides of (29) with

a :=
{

(1 − ωnεn)2‖(pn
δ,h − uδ,h(tn))‖2 + ω2

n‖Bh(pn
δ,h − uδ,h(tn))‖2

}
1
2

, b :=
ω2

nλn

2
,

one gets

‖pn+1
δ,h − uδ,h(tn+1)‖2 ≤ (1 − ωnεn + cω2

n)‖pn
δ,h − uδ,h(tn)‖2 + d

ω3
n

εn

, (30)

where we assume that ωn tends to zero monotonically as n → ∞, and

c := (1 + ω0ε0)(ε
2
0 + N1), N1 = (N + h)2, d :=

1

4
λ2

n(1 + ε0ω0). (31)

Let

νn(δ,h) := ‖pn(δ,h)
δ,h − uδ,h(tn(δ,h))‖2, αn(δ,h) := ωn(δ,h)εn(δ,h) − cω2

n(δ,h), θn(δ,h) := d
ω3

n(δ,h)

εn(δ,h)
.

The desired result (28) is an immediate consequence of (30) and Lemma 4.1

Theorem 4.2. Assume the condition (Σ) holds. Assume further that
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(i). δ is the level of noise in (26): ‖f − f δ‖ ≤ δ and (5) holds;

(ii). n = n(δ, h) is chosen in such a way that lim
r→0

n(δ, h) = ∞;

(iii). ε(t) ∈ C[0,∞), ε(t) ց 0 (t → ∞), and
|ε̇(t)|
ε(t)2 → 0(t → ∞);

(iv).
∑∞

n=1 ωn = ∞, 0 < ωn < 1 and limr→0
δ+h√
εn(δ,h)

= 0.

Then

lim
r→0

‖qn
δ,h − y‖ = 0,

where n := n(δ, h).

Proof Note that uδ,h(t) satisfies (21), one has

uδ,h(tn+1) = uδ,h(tn) + ωnu̇δ,h(tn) +
ω2

n

2
u′′

δ,h(ξn), ξn ∈ (tn, tn+1)

= uδ,h(tn) + ωn[(−uδ,h(tn) + (Bh + εn)−1Fδ,h]

+
ω2

n

2

{

u(ξn) −
(

I + ε̇(ξn)(Bh + ε(ξn))−1
)

(Bh + ε(ξn))−1Fδ,h

}

.

Then

‖qn+1
δ,h − uδ,h(tn+1)‖ ≤ (1 − ωn)‖qn

δ,h − uδ,h(tn)‖ +
ω2

nλn

2
, (32)

where

λn = ‖uδ,h(ξn) − y‖ + ‖y − (Bh + ε(ξn))−1Fδ,h‖ + ‖ε̇(ξn)(Bh + ε(ξn))−2Fδ,h‖. (33)

Since

‖y − (Bh + ε(ξn))−1Fδ,h‖ ≤ C(δ + h)
√

ε(ξn)
+ φ(ε(ξn)), (34)

where the function φ(β) is as the same as in (17), C = max{1/2, ‖y‖}. By (33), (34) and Lemma
2.1 one gets

λn = ‖uδ,h(ξn) − y‖ + ‖y − (Bh + ε(ξn))−1Fδ,h‖ + ‖ε̇(ξn)(Bh + ε(ξn))−2Fδ,h‖

≤ ‖uδ,h(ξn) − y‖ +
C(δ + h)
√

ε(ξn)
+ φ(ε(ξn) + ‖ ε̇(ξn)

ε2(ξn)
ε2(ξn)(Bh + ε(ξn))−2Fδ,h‖

≤ ‖uδ,h(ξn) − y‖ +
C(δ + h)
√

ε(ξn)
+ φ(ε(ξn) +

|ε̇(ξn)|
ε2(ξn)

‖Fδ,h‖.

It follows from Theorem 3.1 and the conditions in Theorem 4.2 that limr→0 λn(δ,h) = 0. Denote
gn

δ,h = ‖qn
δ,h − uδ,h(tn)‖ and βn = λnω2

n/2. Then

gn+1
δ,h ≤ (1 − ωn)gn

δ,h + βn. (35)

From Lemma 4.1 and the condition (iv), one has

lim
r→0

g
n(δ,h)
δ,h = 0. (36)

The conclusion follows from Theorem 3.1 and (36).
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5 Conclusion

Two dynamical system methods are presented for solving operator equations of the first kind
with both operator and right-hand nonexact, which extended the methods introduced in [5, 6].
Moreover, we also present two convergent iterative processes for the dynamical systems. It is
of further interest to investigate other types of dynamical system methods for solving operator
equations of the first kind and to present some discrete methods for solving the relevant Cauchy
problems more efficiently.
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