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Abstract. In this paper, we introduce matrix-valued multiresolution analysis and matrix-
valued wavelet packets. A procedure for the construction of the orthogonal matrix-valued
wavelet packets is presented. The properties of the matrix-valued wavelet packets are in-
vestigated. In particular, a new orthonormal basis of L2(R, Cs×s) is obtained from the
matrix-valued wavelet packets.
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1 Introduction

Wavelet packets, due to their nice characteristics, have been applied to signal processing [1],
image compression [2], integral equations [3] and so on. Coifman and Meyer [4] firstly introduced
the concept of orthogonal wavelet packets. The introduction for biorthogonal wavelet packets
was attributable to Cohen and Daubechies [5]. Furthermore, Yang and Cheng [6] constructed
a-scale orthogonal multiwavelet packets which are more flexible in applications. Recently, the
multiwavelets have become the focus of active research both in theory and application, such as
signal processing [7], mainly because of their ability to offer properties like orthogonality and
symmetry simultaneously. The matrix-valued wavelets are a class of generalized multiwavelets.
Xia and Suter [8] introduced the concept of the matrix-valued wavelets and investigated its
construction. Moreover, they showed that multiwavelets can be generated from the component
functions of matrix-valued wavelets. However, the multiwavelets and matrix-valued wavelets
are different in the following sense. For example, prefiltering is usually required for discrete
multiwavelet transforms [9] but not necessary for discrete matrix-valued wavelet transforms. A
typical example of such matrix-valued signals is video images. Hence, studying the matrix-valued
wavelets is useful in representations of signals. It is necessary to extend the concept of orthogonal
wavelet packets to the case of orthogonal matrix-valued wavelets. Based on an observation in

∗Correspondence to: Qingjiang Chen, School of Science, Xi’an Jiaotong University, Xi’an 710049, China. Email:
chenxj6684@mail.xjtu.edu.cn
†This work is partially supported by the Natural Science Foundation of Henan (0211044800).

Numer. Math. J. Chinese Univ. (English Ser.) 45 http://www.global-sci.org/nm



46 Orthogonal Matrix-Valued Wavelet Packets

[8] and some ideas from [5,6], we will give the definition for 3-scale orthogonal matrix-valued
wavelet packets and investigate the properties of the orthogonal matrix-valued wavelet packets
by using matrix theory and integral transform.

Throughout the paper, we use the following notations. Let R and C be sets of all real and
complex numbers, respectively. Z stands for all integers. Set s ∈ Z, s ≥ 2, and Z+ = {z : z ≥
0, z ∈ Z}. By Is and O, we denote the s × s identity matrix and zero matrix, respectively.

L2(R, Cs×s) : =





~(t) :=




h11(t) h12(t) · · · h1 s(t)
h21(t) h22(t) · · · h2 s(t)
· · · · · · · · · · · ·

hs1(t) hs2(t) · · · hs s(t)


 :

t ∈ R, hk l(t) ∈ L2(R),
k, l = 1, 2, · · · , s






The signal space L2(R, Cs×s) is called a matrix-valued function space. Examples of matrix-
valued signals are video images where hk l(t) is the pixel on the kth row and the lth column at
time t.

For each ~ ∈ L2(R, Cs×s), ||~|| represents the norm of operator ~ as

|| ~|| :=




s∑

k, l=1

∫

R

|hk, l(t)|
2dt




1/2

. (1)

which is the norm used in this paper for the matrix-valued function spaces L2(R, Cs×s).
For ~ ∈ L2(R, Cs×s), its integration

∫
R

~(t)dt is defined as
∫

R
~(t)dt := (

∫
R

hk,l(t) dt )s
k,l=1,

where ~(t) is the matrix-valued functions (hk, l(t) )s
k, l=1 to be defined below. The Fourier trans-

form of ~(t) is defined by ~̂(ω) :=
∫

R
~(t) exp{−iωt} dt, ω ∈ R.

For two matrix-valued functions ~, Υ ∈ L2(R, Cs×s), their symbol inner product is defined by
[ ~, Υ ] :=

∫
R

~(t)Υ(t)∗ dt. Here and afterwards, ∗ means the transpose and the complex conjugate.

Definition 1.1. A sequence {~k(t)}k∈Z ⊂ X ⊂ L2(R, Cs×s) is called an orthonormal set in X,
if it satisfies

[ ~k, ~l ] = δk, lIs, k, l ∈ Z (2)

where δk, l is the Kronecker symbol, i.e., δk, l = 1 as k = l and δk, l = 0 otherwise.

Definition 1.2. A matrix-valued function ~(t) ∈ L2(R, Cs×s) is said to be orthonormal, if
{~(t − k)}k∈Z is an orthonormal set.

Definition 1.3. A sequence of matrix-valued functions {~k(t)}k∈Z ⊂ X ⊂ L2(R, Cs×s) is called
an orthonormal basis of X if it satisfies (2) and for any Υ(t) ∈ X, there exists a unique matrix
sequence {Pk}k∈Z such that Υ(t) =

∑
k∈Z

Pk~k(t), t ∈ R.

This paper is organized as follows. In Section 2, we briefly recall the concepts relevant to
the matrix-valued multiresolution analysis. In Section 3, we give our main result, and some
properties of the matrix-valued wavelet packets.

2 Matrix-valued multiresolution analysis and wavelets

We begin with the generic setting of a matrix-valued multiresolution analysis of L2(R, Cs×s).
Let S (t) ∈ L2(R, Cs×s) satisfy the following refinement equation:

S (t) = 3 ·
∑

k∈Z

Ak S(3 t − k), (3)
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where {Ak}k∈Z is a finitely supported sequence of s × s constant matrix.
Define a closed subspace Vj ⊂ L2(R, Cs×s) by

Vj = closL2(R,Cs×s)〈S(3j · −k) : k ∈ Z 〉, j ∈ Z. (4)

Definition 2.1. We say that S (t) in (3) generates a matrix-valued multiresolution analysis
{Vj}j∈Z of L2(R, Cs×s), if the sequence {Vj}j∈Z defined by (4) satisfies:

(1). · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ;

(2).
⋂

j∈Z
Vj = {O} ;

⋃
j∈Z

Vj is dense in L2(R, Cs×s);

(3). ~(·) ∈ V0⇐⇒~(3j ·) ∈ Vj , ∀j ∈ Z;

(4). ∃ S (t) ∈ V0 such that Sk(t) := S(t − k), k ∈ Z, form an orthonarmal basis for V0.

A matrix-valued functions S(t) in (3) is said to be a matrix-valued scaling function if it
generates a matrix-valued multiresolution analysis. Equation (3) is called a refinement equation.
Set A(ω) =

∑
k∈Z

Ak · exp{−ikω}, ω ∈ R. Then, the frequency form of (3) is

Ŝ(ω) = A(ω/3) Ŝ(ω/3), ω ∈ R. (5)

In the following, without loss of generality we assume Ŝ(ω) is continuous at the origin and

Ŝ(0) = Is.
Let Uj , j ∈ Z be the orthocomplement space of Vj in Vj+1. Assume there exist two matrix-

valued functions W1(t), W2(t) ∈ L2(R, Cs×s), such that their translates and dilates form a Riesz
basis of Uj , i.e.,

Uj = closL2(R,Cs×s)〈Wı(3
j · −k) : ı = 1, 2, k ∈ Z 〉, j ∈ Z. (6)

Since W1(t), W2(t) ∈ U0 ⊂ V1, there exist two finitely supported sequences of s × s matrix

{B
(ı)
k }k∈Z, ı = 1, 2 such that Wı(t) = 3

∑
k∈Z

B
(ı)
k S (3t − k). Taking Fourier transform for (6)

gives
Ŵı(ω) = B(ı)(ω/3) Ŝ(ω/3), ı = 1, 2, ω ∈ R, (7)

where
B(ı)(ω) =

∑

k∈Z

Bk · exp{−ikω}, ı = 1, 2. (8)

We call S(t) ∈ L2(R, Cs×s) an orthonormal matrix-valued scaling function if it is a scaling
function and satisfies

[S(·), S(· − n) ] = δ0, nIs, n ∈ Z. (9)

We say that W1(t), W2(t) ∈ L2(R, Cs×s) are two orthonormal matrix-valued wavelet functions
associated with an orthonormal matrix-valued scaling functions if it satisfies

[S(·), Wı(· − n) ] = O, ı = 1, 2, n ∈ Z; (10)

[ Wı(·), W(· − n) ] = δı,  δ0, nIs, ı,  ∈ {1, 2}, n ∈ Z. (11)

Lemma 2.1. Let ~(t) ∈ L2(R, Cs×s). Then ~(t) is orthonormal if and only if

∑

k∈Z

~̂(ω + 2kπ)~̂(ω + 2kπ)∗ = Is. (12)
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Proof If ~(t) is an orthonormal matrix-valued functions, then we get from (2) that

δ0, kIs = [ ~(·), ~(· − k) ] =
1

2π

∫

R

~̂(ω)~̂(ω)∗ · exp{ikω}dω

=
1

2π

∫ 2π

0

∑

l∈Z

~̂(ω + 2lπ)~̂(ω + 2lπ)∗ · exp{ikω}dω,

which implies that (12) holds. The converse is obvious.

By Lemma 2.1 and (5), (7), (9)-(11), we can obtain the following lemma.

Lemma 2.2. ([8]) Let S(t) ∈ L2(R, Cs×s) be an orthonormal matrix-valued scaling function.

Assume W1(t), W2(t) ∈ L2(R, Cs×s) are orthogonal matrix-valued wavelet functions associated

with S(t). Then we have

A(ω)A(ω)∗ + A(ω1)A(ω1)
∗ + A(ω2)A(ω2)

∗ = Is, ω ∈ R, (13)

A(ω)B(ı)(ω)∗ + A(ω1)B
(ı)(ω1)

∗ + A(ω2)B
(ı)(ω2)

∗ = O, ı = 1, 2, ω ∈ R, (14)

B(ı)(ω)B()(ω)∗ + B(ı)(ω1)B
()(ω1)

∗ + B(ı)(ω2)B
()(ω2)

∗ = δı, Is, ı,  ∈ {1, 2}, (15)

where ω1 = ω + 2π/3 and ω2 = ω + 4π/3.

We now present matrix-valued Meyer wavelets as a special family of the matrix-valued
wavelets. For more about scalar-valued Meyer wavelets, see [10]. Let

Ŝ(ω) =






Is, |ω| <
2π

3
,

cos

[
π

2
f

(
3

2π

)
|ω| − 1

]
Γ(ω),

2π

3
≤ |ω| ≤

4π

3
,

0, otherwise,

(16)

where Γ(ω) is paraunitary and Γ(2π/3) = Γ(−2π/3) = Is, and f(t) is a scalar-valued smooth
function such that

f(t) =

{
1, t ≥ 1,
0, t ≤ 0,

and f(t) + f(1 − t) = 1, fort ∈ (0, 1).

Then, after some computation, for ω ∈ R, we get that
∑

k∈Z
Ŝ(ω + 2kπ)Ŝ(ω + 2kπ)∗ = Is.

By Lemma 2.1, S(t) is an orthonormal matrix-valued scaling function. This implies that S(t)
defined by (16) is a matrix-valued scaling function. Similar to the scalar-valued Meyer wavelets

([10, p. 138]), the corresponding lowpass filter A(ω) is A(ω) =
∑

k∈Z
Ŝ(2(ω + 2kπ)).

By using paraunitary vector filter theory [11], we can obtain two filter functions B(1)(ω) and

B(2)(ω) satisfying (14) and (15). Let Ŵı(ω) = B(ı)(ω/3) Ŝ(ω/3), ı = 1, 2. Then, W1(t) and
W2(t) are two matrix-valued Meyer wavelets [8].

3 Orthogonal matrix-valued wavelet packets

Xia and Suter [8] introduced the notion of matrix-valued wavelets and investigated their con-
struction. In this section, we will give the definition of the matrix-valued wavelet packets and
discuss some of their properties. First, we set

Ψ0(t) = S(t), Ψı(t) = Wı(t); Ω
(0)
k = Ak, Ω

(ı)
k = B

(ı)
k , ı = 1, 2, k ∈ Z.
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Definition 3.1. The collection of the matrix-valued functions {Ψ3n+λ(t), n = 0, 1, · · · , λ =
0, 1, 2 } is called a matrix-valued wavelet packet with respect to the orthogonal matrix-valued
scaling function S(t), where

Ψ3n+λ(t) = 3 ·
∑

k∈Z

Ω
(λ)
k Ψn(3t − k), λ = 0, 1, 2. (17)

By implementing the Fourier transform for both sides of (17), we have

Ψ̂3n+λ(ω) = Ω(λ)(ω/3) Ψ̂n(ω/3), λ = 0, 1, 2, (18)

where
Ω(λ)(ω) =

∑

k∈Z

Ω
(λ)
k · exp{−ikω}, λ = 0, 1, 2, ω ∈ R. (19)

Thus, Ω(0)(ω) = A(ω), Ω(ı)(ω) = B(ı)(ω), ı = 1, 2. Formulas (13)-(15) can be written as

2∑

σ=0

Ω(λ)

(
ω +

2πσ

3

)
Ω(µ)

(
ω +

2πσ

3

)∗

= δλ, µIs, λ, µ ∈ {0, 1, 2}, ω ∈ R. (20)

It is evident that (20) is equivalent to

∑

σ∈Z

Ω
(λ)
σ+3k (Ω

(µ)
σ+3l)

∗ =
1

3
δλ, µδk, lIs, λ, µ = 0, 1, 2, k, l ∈ Z. (21)

In the following, we will investigate the properties of the matrix-valued wavelet packets.

Theorem 3.1. If {Ψn(t)} is a matrix-valued wavelet packets with respect to the orthogonal

matrix-valued scaling function S(t), then for every n ∈ Z+, we have

[Ψn(· − j ) , Ψn(· − k) ] = δj, k Is, j, k ∈ Z. (22)

Proof (Induction) (i) The result (22) follows from (9) as n = 0. (ii) Assume that (22)
holds when 0 ≤ n < 3L, where L is a positive integer. Then, as 3L ≤ n < 3L+1, we have
3L−1 ≤ [n/3] < 3L where [ρ] = max{ν ∈ Z, ν ≤ ρ} . Thus, order n = 3[n/3] + λ, λ = 0, 1, 2. By
the induction assumption and Lemma 2.1, we obtain

[Ψ[ n

3
](· − j), Ψ[ n

3
](· − k) ] = δj, kIs ⇐⇒

∑

l∈Z

Ψ̂[ n

3
](ω + 2lπ)Ψ̂[ n

3
](ω + 2lπ)∗ = Is. (23)

It follows from (18), (20) and (23) that
∑

l∈Z

Ψ̂n(ω + 2lπ ) Ψ̂n(ω + 2lπ )∗

=
∑

l∈Z

Ω(λ)

(
ω + 2lπ

3

)
Ψ̂[ n

3
]

(
ω + 2lπ

3

)
Ψ̂[ n

3
]

(
ω + 2lπ

3

)∗

Ω(λ)

(
ω + 2lπ

3

)∗

=

2∑

σ=0

Ω(λ)

(
ω + 2σπ

3

){∑

κ∈Z

Ψ̂[ n

2
]

(
ω + 2σπ

3
+ 2κπ

)
Ψ̂[ n

2
]

(
ω + 2σπ

3
+ 2κπ

)∗
}

Ω(λ)

(
ω + 2σπ

3

)∗

=
2∑

σ=0

Ω(λ)

(
ω + 2σπ

3

)
Ω(λ)

(
ω + 2σπ

3

)∗

= Is

Therefore, by Lemma 2.1, the result (22) follows.
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Theorem 3.2. If {Ψn(t)} is a matrix-valued wavelet packets with respect to the orthogonal

matrix-valued scaling function S(t), then for every n ∈ Z+, we have

[Ψ3n+λ(·) , Ψ3n+µ(· − k) ] = δλ, µ δ0, k Is, λ, µ ∈ {0, 1, 2}, k ∈ Z. (24)

Proof By (18) and (21) and Theorem 3.1, we obtain

[Ψ3n+λ( · ) , Ψ3n+µ( · − k ) ] =
1

2π

∫

R

Ω(λ)
(ω

3

)
Ψ̂n

(ω

3

)
Ψ̂n

(ω

3

)∗
Ω(µ)

(ω

3

)∗
· eikω dω

=
1

2π

∫ 6π

0

Ω(λ)
(ω

3

){∑

l∈Z

Ψ̂n

(ω

3
+ 2lπ

)
Ψ̂n

(ω

3
+ 2lπ

)∗
}

Ω(µ)
(ω

3

)∗
· exp{ikω}dω

=
1

2π

∫ 2π

0

2∑

σ=0

Ω(λ)

(
ω + 2πσ

3

)
Ω(µ)

(
ω + 2πσ

3

)∗

exp{ikω}dω

=
1

2π

∫ 2π

0

δλ,µIs · exp{ikω} dω = δλ,µδ0,kIs.

This completes the proof of this theorem.

Theorem 3.3. For any m, n ∈ Z+ and k ∈ Z, we have

[Ψm(·) , Ψn(· − k) ] = δm, n δ0, kIs. (25)

Proof For m = n, (25) follows by Theorem 3.1. Without loss of generality, we suppose m > n
in case of m 6= n. Rewrite m, n as m = 3[m/3] + λ1, n = 3/[n/3] + µ1, where λ1, µ1 ∈ {0, 1, 2}.

Case 1. If [m/3] = [n/3], then λ1 6= µ1. By (18), (20) and (23),

[Ψm (·) , Ψn (· − k) ] =
1

2π

∫

R

Ω(λ1)
(ω

3

)
Ψ̂[ m

3
]

(ω

3

)
Ψ̂[ n

3
]

(ω

3

)∗
Ω(µ1)

(ω

3

)∗
· exp{ikω} dω

=
3

2π

∫ 2π

0

Ω(λ1)(ω)

{
∑

l∈Z

Ψ̂[ n

3
](ω + 2lπ) Ψ̂[ n

3
](ω + 2lπ)∗

}
Ω(µ1)(ω)∗ · exp{3ikω} dω

=
3

2π

∫ 2π

3

0

2∑

σ=0

Ω(λ1)

(
ω +

2πσ

3

)
Ω(µ1)

(
ω +

2πσ

3

)
· exp{3ikω} dω

=
3

2π

∫ 2π

3

0

δλ1, µ1
Is · exp{3ikω} dω = O,

which implies that (25) holds in this case.

Case 2. If [m
3 ] 6= [n

3 ], then set [m/3] = 3[ [m/3]/3] + λ2, [n/3] = 3[ [n/3]/3] + µ2, λ2, µ2 ∈
{0, 1, 2}. If [ [m/3]/3] = [ [n/3]/3], then (25) can be established similar to Case 1. If [ [m/3]/3] 6=
[ [n/3]/3], then we again set [ [m/3]/3] = 3[ [ [m/3]/3]/3] + λ3, [ [n/3]/3] = 3[ [ [n/3]/3]/3] +
µ3, λ3, µ3 ∈ {0, 1, 2}. Thus, after taking finite times steps (denoted by κ), we obtain

aκ = bκ = 1, or aκ = bκ = 2, (26)

where

aκ =

κ︷ ︸︸ ︷
[ [· · · [ m/2] · · · ]/2], bκ =

κ︷ ︸︸ ︷
[ [· · · [ n/2] · · · ]/2].
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aκ = 1, bκ = 0, or aκ = 2, bκ = 1, or aκ = 2, bκ = 0, λκ, µκ ∈ {0, 1, 2}. (27)

For the case (26), the result (25) follows similarly to Case 1. For the case (27), we have from
(10) and (11) that ∑

l∈Z

Ψ̂aκ
(ω + 2lπ) Ψ̂bκ

(ω + 2lπ)∗ = O, ω ∈ R.

Consequently,

[Ψm(·) , Ψn(· − k) ] =
1

2π

∫

R

Ψ̂m(ω) Ψ̂n(ω)∗ · exp{ikω} dω

=
1

2π

∫

R

Ω(λ1)
(ω

3

)
Ψ̂[m/3]

(ω

3

)
Ψ̂[n/3]

(ω

3

)∗
Ω(µ1)

(ω

3

)∗
· exp{ikω} dω = · · · · · ·

=
1

2π

∫

R

κ∏

σ=1

Ω(λσ)
( ω

3σ

)
Ψ̂aκ

( ω

3κ

)
Ψ̂bκ

( ω

3κ

)∗
(

κ∏

σ=1

Ω(µσ)
( ω

3σ

))∗

· exp{ikω} dω

=
1

2π

∫ 3κ+1π

0

κ∏

σ=1

Ω(λσ)
( ω

3σ

)(∑

l∈Z

Ψ̂aκ

( ω

3κ
+ 2lπ

)
Ψ̂bκ

( ω

3κ
+ 2lπ

)∗
)

·

(
κ∏

σ=1

Ω(µσ)
( ω

3σ

))∗

· eikωdω

=
1

2π

∫ 3κ+1π

0

κ∏

σ=1

Ω(λσ)
( ω

2σ

)
·O ·

(
κ∏

σ=1

Ω(µσ)
( ω

3σ

))∗

· exp{ikω} dω = O.

Therefore, for any m, n ∈ Z+ and k ∈ Z, (25) holds.

Lemma 3.1. If {Ψn(t), n = 0, 1, 2, · · · } is a matrix-valued wavelet packets with respect to the

orthonormal matrix-valued scaling functions S(t), then for every n ∈ Z+, we have

Ψn(3t − k) =
1

3

2∑

σ=0

∑

l∈Z

(Ω
(σ)
k−3l)

∗Ψ3n+σ(t − l), k ∈ Z. (28)

Proof Observe

1

3

2∑

σ=0

∑

l∈Z

(Ω
(σ)
k−3l)

∗Ψ3n+σ(t − l) =
2∑

σ=0

∑

l∈Z

(Ω
(σ)
k−3l)

∗
∑

j∈Z

Ω
(σ)
j Ψn(3t − 3l − j)

=
2∑

σ=0

∑

l∈Z

∑

m∈Z

(Ω
(σ)
k−3l)

∗ Ω
(σ)
m−3l Ψn(3t − m) =

∑

m∈Z

{
2∑

σ=0

∑

l∈Z

(Ω
(σ)
k−3l)

∗ Ω
(σ)
m−3l

}
Ψn(3t − m)

=
∑

m∈Z

δk, mIs Ψn(3t − m) = Ψn(3t − k).

This completes the proof of Lemma 3.1.

We shall discuss the orthogonal decomposition relation for L2(R, Cs×s). Let

Yn
j = closL2(R, Cs×s)〈Ψn(3j · −k) : k ∈ Z〉, n ∈ Z+, j ∈ Z. (29)
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Theorem 3.4. Let n ∈ Z+ and
⊕

denote orthogonal direct sum. We have

Yn
j+1 = Y3n

j

⊕
Y3n+1

j

⊕
Y3n+2

j , j ∈ Z. (30)

Proof According to (17) and (29), Y3n
j

⊕
Y3n+1

j

⊕
Y3n+2

j ⊂ Yn
j+1. On the other hand, Y3n

j ,

Y3n+1
j and Y3n+2

j are orthogonal to each other by Theorem 3.2. By Lemma 3.1, we have

Ψn(3j+1 t − k) =
1

3

2∑

σ=0

∑

l∈Z

(Ω
(σ)
k−3l)

∗Ψn+σ(3j t − l), j, k ∈ Z.

Hence, the basis of the space Yn
j+1 can be linearly represented by the basis of the space Y3n

j ,

Y3n+1
j and Y3n+2

j . Then, we have Yn
j+1 ⊂ Y3n

j

⊕
Y3n+1

j

⊕
Y3n+2

j . This implies that (30) holds
for every n ∈ Z+, j ∈ Z.

Corollary 3.1. For every j ≥ 1 and 1 ≤ k ≤ j, we have

Uj = Y3k

j−k

⊕
Y3k+1

j−k

⊕
· · ·
⊕

Y3k+1
−1

j−k . (31)

Moreover,

L2(R, C
s×s) =

⊕

j∈Z

Uj = · · ·
⊕

U−2

⊕
U−1

⊕
U0

∞⊕

κ=3

Yκ
0 . (32)

Finally, the family of matrix-valued functions

{Ψ1(3
j − k), Ψn(· − k) : j = · · · ,−2,−1, 0; n = 3, 4, · · · , k ∈ Z}

is an orthogonal basis of L2(R, Cs×s).
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