arrow
Volume 28, Issue 3
BMO Estimates for Multilinear Fractional Integrals

Xiangxing Tao & Yunpin Wu

Anal. Theory Appl., 28 (2012), pp. 224-231.

Published online: 2012-10

Export citation
  • Abstract

In this paper, the authors prove that the multilinear fractional integral operator $T_{\Omega,\alpha}^{A_1,A_2}$ and the relevant maximal operator $M_{\Omega,\alpha}^{A_1,A_2}$ with rough kernel are both bounded from $L^p$ $(1 < p < \infty)$ to $L^q$ and from $L^p$ to $L^{n/(n−\alpha),\infty}$ with power weight, respectively, where$$T_{\Omega,\alpha}^{A_1,A_2}(f)(x) =\int_{\mathbf{R}^n}\frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}}\Omega(x-y)f(y)dy$$and$$M_{\Omega,\alpha}^{A_1,A_2}(f)(x)= \sup_{r > 0}\frac{1}{r^{n−\alpha+m_1+m_2−2}}\int_{|x−y|<r}\prod_{i=1}^{2}{R_{m_i}}(A_i;x,y)\Omega(x-y)f(y)dy$$ and $0<\alpha<n$, $\Omega \in L^s(S^{n−1})$ $(s \geq 1)$ is a homogeneous function of degree zero in $\mathbf{R}^n$, $A_i$ is a function defined on $\mathbf{R}^n$ and $R_{m_i} (A_i;x,y)$ denotes the $m_i$−th remainder of Taylor series of $A_i$ at $x$ about $y$. More precisely, $R_{m_i} (A_i;x,y) = A_i(x)− \sum\limits_{|\gamma|< m_i}\frac{1}{\gamma!}D^{\gamma}A_i(y)(x−y)^r,$ where $D^{\gamma} (A_i) \in BMO(\mathbf{R}^n)$ for $|\gamma | = m_i−1(m_i > 1)$, $i = 1,2$.

  • AMS Subject Headings

42B20, 42B25

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-28-224, author = {}, title = {BMO Estimates for Multilinear Fractional Integrals}, journal = {Analysis in Theory and Applications}, year = {2012}, volume = {28}, number = {3}, pages = {224--231}, abstract = {

In this paper, the authors prove that the multilinear fractional integral operator $T_{\Omega,\alpha}^{A_1,A_2}$ and the relevant maximal operator $M_{\Omega,\alpha}^{A_1,A_2}$ with rough kernel are both bounded from $L^p$ $(1 < p < \infty)$ to $L^q$ and from $L^p$ to $L^{n/(n−\alpha),\infty}$ with power weight, respectively, where$$T_{\Omega,\alpha}^{A_1,A_2}(f)(x) =\int_{\mathbf{R}^n}\frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}}\Omega(x-y)f(y)dy$$and$$M_{\Omega,\alpha}^{A_1,A_2}(f)(x)= \sup_{r > 0}\frac{1}{r^{n−\alpha+m_1+m_2−2}}\int_{|x−y|<r}\prod_{i=1}^{2}{R_{m_i}}(A_i;x,y)\Omega(x-y)f(y)dy$$ and $0<\alpha<n$, $\Omega \in L^s(S^{n−1})$ $(s \geq 1)$ is a homogeneous function of degree zero in $\mathbf{R}^n$, $A_i$ is a function defined on $\mathbf{R}^n$ and $R_{m_i} (A_i;x,y)$ denotes the $m_i$−th remainder of Taylor series of $A_i$ at $x$ about $y$. More precisely, $R_{m_i} (A_i;x,y) = A_i(x)− \sum\limits_{|\gamma|< m_i}\frac{1}{\gamma!}D^{\gamma}A_i(y)(x−y)^r,$ where $D^{\gamma} (A_i) \in BMO(\mathbf{R}^n)$ for $|\gamma | = m_i−1(m_i > 1)$, $i = 1,2$.

}, issn = {1573-8175}, doi = {https://doi.org/10.3969/j.issn.1672-4070.2012.03.002}, url = {http://global-sci.org/intro/article_detail/ata/4557.html} }
TY - JOUR T1 - BMO Estimates for Multilinear Fractional Integrals JO - Analysis in Theory and Applications VL - 3 SP - 224 EP - 231 PY - 2012 DA - 2012/10 SN - 28 DO - http://doi.org/10.3969/j.issn.1672-4070.2012.03.002 UR - https://global-sci.org/intro/article_detail/ata/4557.html KW - multilinear operator, fractional integral, rough kernel, BMO. AB -

In this paper, the authors prove that the multilinear fractional integral operator $T_{\Omega,\alpha}^{A_1,A_2}$ and the relevant maximal operator $M_{\Omega,\alpha}^{A_1,A_2}$ with rough kernel are both bounded from $L^p$ $(1 < p < \infty)$ to $L^q$ and from $L^p$ to $L^{n/(n−\alpha),\infty}$ with power weight, respectively, where$$T_{\Omega,\alpha}^{A_1,A_2}(f)(x) =\int_{\mathbf{R}^n}\frac{R_{m_1}(A_1;x,y)R_{m_2}(A_2;x,y)}{|x-y|^{n-\alpha+m_1+m_2-2}}\Omega(x-y)f(y)dy$$and$$M_{\Omega,\alpha}^{A_1,A_2}(f)(x)= \sup_{r > 0}\frac{1}{r^{n−\alpha+m_1+m_2−2}}\int_{|x−y|<r}\prod_{i=1}^{2}{R_{m_i}}(A_i;x,y)\Omega(x-y)f(y)dy$$ and $0<\alpha<n$, $\Omega \in L^s(S^{n−1})$ $(s \geq 1)$ is a homogeneous function of degree zero in $\mathbf{R}^n$, $A_i$ is a function defined on $\mathbf{R}^n$ and $R_{m_i} (A_i;x,y)$ denotes the $m_i$−th remainder of Taylor series of $A_i$ at $x$ about $y$. More precisely, $R_{m_i} (A_i;x,y) = A_i(x)− \sum\limits_{|\gamma|< m_i}\frac{1}{\gamma!}D^{\gamma}A_i(y)(x−y)^r,$ where $D^{\gamma} (A_i) \in BMO(\mathbf{R}^n)$ for $|\gamma | = m_i−1(m_i > 1)$, $i = 1,2$.

Xiangxing Tao & Yunpin Wu. (1970). BMO Estimates for Multilinear Fractional Integrals. Analysis in Theory and Applications. 28 (3). 224-231. doi:10.3969/j.issn.1672-4070.2012.03.002
Copy to clipboard
The citation has been copied to your clipboard